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Abstract. The problem of the bifurcations of symmetrical singularities is attacked in the case of
the most simple symmetry. We show that the Lagrangian singularities invariant through the mirror
symmetry may undergo two types of bifurcations involving butterflies. In both cases, a pair of
symmetric butterflies is created or disappears. In addition, we give a concrete application of our
results in the domain of geometrical optics.

(Some figures in this article appear in colour in the electronic version; see www.iop.org)

1. Introduction

Symmetrical caustics are commonly encountered in many areas of physics, not only in
geometrical optics [1, 2], or in wave optics [3], but also in structural mechanics [4], ballistic
heat pulses in crystals [5], bound states of Hamiltonian systems [6], etc.

Mathematically, a caustic may be understood as a Lagrangian singularity [7]. The theory
of the Lagrangian singularities has been successfully applied in physics, for instance, to the
study of the diffraction patterns of the optical caustics [8]. However, the physical systems
often present symmetries and in that case the general theory is not directly applicable to them.
A specific theory of the symmetrical Lagrangian singularities actually exists but it is far from
being complete and only particular cases are known [9–11]. Moreover, to our knowledge,
almost nothing is known about the bifurcations of the symmetrical caustics, although they
would help one to understand how the symmetrical singularities may be produced, or how
they may be destroyed. In other words, the study of the bifurcations of the symmetrical
singularities is important, since it allows one to understand their stability. In this paper, we
study some bifurcations of a caustic invariant through a symmetry, in the 3D space. We choose
a simple type of symmetry, namely mirror symmetry. We also choose a simple type of caustic
having mirror symmetry: the symmetric butterfly (denoted by B3 [12]), which is the only
point singularity with minimal corank 1 [10]. The symmetric butterflies are encountered, for
instance, in polyhedral caustics, around the three-fold axes [13].

The symmetric butterfly B3 is represented in figure 1. Around it, the caustic is composed
of two types of points: the fold-points (denoted by A2) which form a self-intersecting surface
and the cusp-points (denoted by A3) which form edges of regression. There are three lines
of self-intersection and four cusp-lines, all ending at the B3-point. Two of the cusp-lines are
contained in the mirror. The two other cusp-lines are mutually exchanged through the mirror
symmetry. It is convenient to distinguish two parts around the symmetric butterfly. As one
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Figure 1. Around a symmetric butterfly (white pointB3), the caustic
surface is composed of a self-intersecting fold-surface A2 ending at
four cusp-linesA3: one, the tail, on a side of the symmetric butterfly
and three on the other side, which delimit two triangular parts on the
caustic, the wings.

moves on the mirror along the cusps, one passes from the part of the caustic located between
the two symmetrical cusp-lines, the wings, to the part located beyond the B3-point and which
contains a unique cusp-line, the tail (figure 1).

The symmetric butterfly may be seen as a swallowtail A4 lying on a cusp-line A3. The
mirror symmetry forces the swallowtail to stay on the cusp-line, a position which would be
unstable in the absence of symmetry. This characterization of B3 will be used in the next
section.

2. Mathematical model of symmetric butterflies and their bifurcations

We recall that each type of caustic point, considered as a Lagrangian singularity, may be
described by a family of functions�, named its generating family, from which all the features
of the singularity may be deduced [7]. It has been proved that the generating family of the
symmetric butterfly has the following form [10]:

�(λ; x1, x2, x3) = λ6 + x2λ
2 + x3λ

4 + x1λ. (1)

Here λ is the argument of the function � and the space coordinates x1, x2, and x3 are the
parameters of the family of functions. The caustic surface C is the set of the points (x1, x2, x3)
for which there exists λ satisfying the following equations [7]:

∂�

∂λ
= ∂2�

∂λ2
= 0. (2)

In the space (λ, x1, x2, x3), both equations in (2) define the set � of the singular points, which
projects in the ordinary space (x1, x2, x3) intoC. Reporting expression (1) into (2) one obtains
x1 and x2 as functions of λ and x3 and the caustic appears as a (singular) surface parametrized
by λ and x3:

x1(λ, x3) = 24λ5 + 8x3λ
3

x2(λ, x3) = −15λ4 − 6x3λ
2.

(3)

Under the tranformation λ → −λ, x1 is transformed into its opposite −x1, whereas x2 remains
fixed, showing that the caustic is invariant through the mirror x1 = 0.

Now, the bifurcations of Lagrangian singularities evolving in time are obtained by
constructing a ‘big caustic’ in the space–time (the product of the space (x1, x2, x3) and
the x4-axis) and next by cutting it by appropriate hyper-surfaces [7]. Each section
represents the instantaneous evolving caustic. In our case, we construct the big caustic
by continuously translating the symmetric butterfly along the new x4-axis. Its generating
family �(λ; x1, x2, x3, x4) keeps the same form (1). We introduce the time function
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τ(x1, x2, x3, x4) = x2
4 − x3, whose level surfaces τ = t define the hyper-surfaces. The

coordinate x3 is now eliminated on the hyper-surfaces: x3 = x2
4 − t . We then obtain the

time-dependent generating family

�(λ; x1, x2, x4) = λ6 + x2λ
2 + (x2

4 − t)λ4 + x1λ. (4)

The corresponding caustic, in the space (x1, x2, x4), is given by

x1(λ, x4) = 24λ5 + 8(x2
4 − t)λ3

x2(λ, x4) = −15λ4 − 6(x2
4 − t)λ2.

(5)

These expressions show that the caustic is left invariant through the mirror symmetry x1 → −x1

for all times t .
We have now to understand what is the caustic evolution represented by the equations (5),

and more precisely, we have to determine whether there exist butterflies, for the different values
of the time t . Since a symmetric butterfly may be viewed as a A4-point locked on a A3-line,
the problem is reduced to the identification of the A3 and A4-points of the caustic. We use the
method we have developed in a previous work [15] and which is based on the notion of Thom’s
class �i1,...,ik [16]. Let us briefly recall that the Thom’s class �1 corresponds to the set of the
regular points of the caustic, i.e. the fold-points A2. The class �1,1 corresponds to the cusp-
points (A3), the class �1,1,1 to the swallowtails (A4) and the class �2 to the umbilics (either
elliptic or hyperbolic). Each class is defined by a condition on the rank of some mapping. The
reader is invited to refer to our paper [15] for more details about the Thom’s classes and their
use in geometrical optics.

The conditions defining the class �1,1 of the cusps A3 lead to the equations λ = 0 or
5λ2 + x2

4 = t . The first equality shows that the x4-axis is a cusp-line for all t . The second
equality shows that for t > 0 there exists another cusp-line, which is closed. These two
solutions allow us to find that the conditions for the class�1,1,1 of the swallowtails take the form
λ = 0, x2

4 − t = 0. Solutions only exist for t > 0: Q1 = (0, 0,
√
t) and Q2 = (0, 0,−√

t).
They are located on the x4-axis, which is a cusp-line. We can then conclude that our generating
family (4) describes the creation (for increasing t) or the annihilation (for decreasing t) of a
pair of two symmetric butterflies, at t = 0. The whole process is identical (isomorphic) to that
studied further, in section 4.1, and it is represented in figure 2. BothB3-points are linked by the
three cusps-lines of their wings and we name this bifurcation a wings-to-wings bifurcation of
symmetric butterflies. The closed cusp-line forms lips. They are reminiscent of the classical
lips bifurcation [7], but they are much more elongated: our calculation shows that their length
(x4 coordinate) scales as t1/2 and their width (x1 coordinate) as t5/2, whereas the scaling is
respectively, t1/2 and t3/2 in the lips bifurcation.

Starting now from the time function τ(x1, x2, x3, x4) = −x2
4 − x3, one finds, by the same

type of calculation, that a pair of symmetric butterflies is created or annihilates at time t = 0,
for respectively increasing or decreasing values of t . The process, identical to that studied in
section 4.2, is represented in figure 3. The butterflies are now oriented in the opposite direction
along the x4-axis and they are linked by their tails. So we name this bifurcation the tail-to-tail
bifurcation of symmetric butterflies. The symmetrical cusp-lines undergo a transformation
which is remisniscent of the bec à bec (beak-to-beak) bifurcation [7], but with much more
elongated beaks, since the length and the width scale as t1/2 and t5/2, instead of t1/2 and t3/2

for the bec à bec bifurcation.
Other bifurcations of symmetrical butterflies may exist. The general problem of classifying

all the possible bifurcations of these symmetrical caustics is a very complicated and challenging
task. In this paper our aim was to solve what we believe constitutes the simplest case.

At this stage, two mathematical models of bifurcations of symmetrical Lagrangian
singularities have beeen obtained. However, we now have to specify the domain of application
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k=0.75 k=k1=0.741622.. k=0.725
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Figure 2. Wings-to-wings bifurcation. Sketch of the caustic C+ in the physical space (x, y, z)
(top) and of the set�1,1 in the source space (bottom), for three values of the bifurcation parameter
k: above the bifurcation point k1 (k = 0.75), at k1 (=0.741 622 . . .) and below k1 (k = 0.725). In
the latter case, the details are shown by cutting the caustic surface and by pulling apart both parts.

k=0.81 k=k2=0.829122... k=0.832
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x y
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Figure 3. Tail-to-tail bifurcation. Sketch of the caustic C− in the physical space (x, y, z) (top) and
of the set �1,1 in the source space (bottom), for three values of the bifurcation parameter k: below
the bifurcation point k2 (k = 0.81), at k2 (=0.829 122 . . .) and above k2 (k = 0.832).

of our results to the physics. Indeed, it is known that the physical laws may strongly affect the
stability of the singularities, that is to say the conditions of their bifurcations. For example,
four of the 11 bifurcations of (non-symmetrical) Lagrangian singularities are excluded in
geometrical optics, because of a convexity property imposed by the eiconal equation [14]. It
is then necessary to check that both bifurcations we have found are effectively realized in a
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physical model. To this end, we shall choose an optical model in the following and we shall
prove that its singularities undergo both bifurcations when some parameter is varied.

3. The optical model

Our physical model is a wavefront propagating in a homogeneous and isotropic medium of
refractive index 1. As in a previous work [13], we define the initial wavefront W with the
required symmetry by introducing a function V : W = {(x, y, z), V (x, y, z) = k}, where k is
some constant. More precisely we fix n points Pi in R3 and n masses mi . The function V is
given by

V (P ) =
n∑
i=1

mid(P, Pi) (6)

where d(P, Pi) denotes the distance from P to Pi . We set mi = 1/n for all i. The model
is defined by six points: four points P1 = (a, b, 0), P2 = (a,−b, 0), P3 = (−a, b, 0) and
P4 = (−a,−b, 0) forming a rectangle in the plane z = 0, and two points P5 = (0, 0, c),
P6 = (0, 0,−c) lying on the z-axis. The rays are the normals to W and the caustic C is
the envelope of the rays. From now on, we shall restrict our attention to a small part of W ,
centred around its point R = (0, 0, z0 = −k + 2

√
k2 − a2/3 − b2/3). Through R pass two

planes of symmetry: x = 0 and y = 0. As a consequence, each of these planes contains a
cusp-line. The symmetry around R is the rectangular symmetry 2mm (also denoted by C2v).
This symmetry, richer than the simple symmetry m needed for the appearance of symmetric
butterflies, is useful to obtain, as we shall see, both bifurcations in the same model.

The constants a, b and c are now fixed: a = 0.7, b = 0.5 and c = 0.1. The bifurcation
parameter of the model is the parameter k, on which depend the surfaceW and the caustic C.

A pointQ = (X, Y, Z) of the congruence of the rays is determined by three coordinates:
the coordinates x, y of the origin on W of the ray passing through Q, and the coordinate s
along the ray. We have

X(x, y, s) = x + sVx
Y (x, y, s) = y + sVy
Z(x, y, s) = z1(x, y) + sVz

(7)

where Vx stands for ∂V/∂x(x, y, z1(x, y)), etc, and where z1(x, y) is defined implicitly by the
equation of W : V (x, y, z1(x, y)) = k. The relation (7) defines a mapping f from the source
space (x, y, s) into the physical space (X, Y,Z). The singular set � is the set of the points of
the source space where f has a rank rk(f ) less than its maximal possible value 3. The caustic
C is the image of � by f : C = f (�).

Here too, we have to determine the different types of the caustic points. The class �1 of
the fold-points is the set of the points where f has a rank equal to 2. Its equation is given by

det ∂(X, Y,Z)/∂(x, y, s) = 0. (8)

Equation (8) involves partial derivatives of z1, which may be obtained from the basic datum
V of the problem by derivating the relation V (x, y, z1(x, y)) = k. More precisely, putting
X (x, y) = Vx(x, y, z1(x, y)), etc, the equation for s is

a0 + a1s + a2s
2 = 0 (9)

where
a0 = Z − z1X − z1Y
a1 = Z(Xx + Yy) + X (Yxz1y − Yyz1x − Zx) + Y(Xyz1x − Xxz1y − Zy)
a2 = Z(XxYy − XyYx) + X (YxZy − YyZx) + Y(ZxXy − ZyXx).

(10)
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Equation (9) has two solutions s± = (−a1 ±
√
a2

1 − 4a0a2)/2a2, showing that the singular
set � is composed of two sheets �+ and �−. Consequently, the caustic C = f (�) is also
composed of two sheets C+ = f (�+) and C− = f (�−).

By reporting the solution s into (7) we define the restriction of f to �1. The class �1,1,
associated with the set of the cusp-lines f (�1,1), is defined by the condition that this restriction
has a rank equal to 1.

The equations for �1 and �1,1 are very intricate, but they may be solved numerically.

4. The two bifurcations

We numerically calculate the two Thom’s classes �1 and �1,1 giving the fold-surface f (�1)

and the set of the cusp-lines f (�1,1) for different values of k, by starting from the value
k0 = 0.8. For all the values of k, the x- and y-axes of the source space are in �1,1, but
located on a different sheet, �+ for the x-axis and �− for the y-axis. In the physical space
they correspond to two (not intersecting) cusp-lines, each one being located in a mirror plane.

4.1. First bifurcation

The value of k is at first progressively decreased from k0. We consider here the sheet C+,
which contains a cusp-line in the plane of symmetry (x, z). Up to k1 = 0.741 623 . . . , the
cusp-line remains stable (figure 2, left). At this k1 value a degenerate point appears on the
cusp-line (it cannot be identified on the drawing of the caustic) (figure 2, middle). Next, a
pair of symmetric butterflies is formed in the plane of symmetry (x, z) (figure 2, right). The
relative distance between the butterflies increases for decreasing values of k. Because of the
presence of the second mirror, the set composed of the two butterflies is also symmetrical with
respect to the plane (y, z). From each butterfly two new cusp-lines start and next converge
to the other butterfly. In this transformation we recognize a wings-to-wings bifurcation of
symmetric butterflies. In the source space, the initial cusp-line is associated with a straight
line and the two new cusp-lines with a small ellipse (figure 2). The butterflies correspond to
the intersection of the straight line and the ellipse. The ellipse is reduced to a single point at
k = k1. This characterization of the bifurcation point allows us to numerically obtain k1 with
a relative error of less than 10−6.

4.2. Second bifurcation

The value of k is now progressively increased from k0. We consider the sheet C−, which
contains a cusp-line in the plane of symmetry (y, z). This cusp-line is surrounded by two
other cusp-lines, which mutually exchange through the mirror symmetry (figure 3, left). With
increasing k, these two cusp-lines become pinched and get closer to the third one. The pinching
increases until the three cusp-lines come into contact for k = k2 = 0.829 122 . . . (figure 3,
middle). Next, two symmetric butterflies are formed in the plane of symmetry (y, z) (figure 3,
right) and their relative distance increases with k. They are linked by one cusp-line. Both initial
symmetrical cusp-lines have been cut and reconnected at the B3-points. Here we recognize
the tail-to-tail bifurcation of symmetric butterflies. In the source space, the initial cusp-lines
correspond, locally near the bifurcation point, to two arcs of hyperbolas (see figure 3). At
the bifurcation point k = k2, both arcs connect and form a cross. This characterization of the
bifurcation point is used to obtain k2 with the same relative error 10−6.

Since the cusp-lines in the source space (set �1,1) form an ellipse in the wings-to-wings
bifurcation and an hyperbola in the tail-to-tail bifurcation, both bifurcations may be considered



Bifurcations of symmetrical caustics 3711

as a pair of two dual bifurcations. However, the tail-to-tail bifurcation is distinguished by the
fact that, in contrast to the wings-to-wings bifurcation, it has a global character, since it modifies
the connectivity of the network of the cusp-lines.

5. Conclusion

We have studied bifurcations of Lagrangian singularities having the mirror symmetry. We have
shown that these singularities may bifurcate through the creation or the annihilation of a pair
of symmetric butterflies contained in the mirror. There exist two types of such bifurcations,
each one being distinguished by the relative orientations of the butterflies: either wings-to-
wings or tail-to-tail. We have checked that both bifurcations are realized in geometrical optics.
However, the general (Lagrangian) nature of our results suggests that they may also be applied
to other physical systems, such as mechanical systems or waves.

References

[1] Nye J F 1986 Proc. R. Soc. A 403 1–26
[2] Joets A and Ribotta R 1994 J. Physique I 4 1013–26
[3] Berry M V, Nye J F and Wright F J 1979 Phil. Trans. R. Soc. Lond. A 291 453–84
[4] Thompson J M T and Hunt G W 1975 J. Appl. Math. Phys. 26 581–603
[5] Wolfe J P 1980 Phys. Today 33 44–50
[6] Delos J B J. Chem. Phys. 86 425–39
[7] Arnold V I 1990 Singularities of Caustics and Wave Fronts (Mathematics and Its Applications 62) (Dordrecht:

Kluwer)
[8] Berry M V and Upstill C 1980 Progress in Optics vol 18, ed E Wolf (Amsterdam: North-Holland) pp 257–346
[9] Janeczko S and Roberts R M 1991 Singularity Theory and its Applications (Warwick, 1989) Part II (Lecture

Notes in Mathematics 1463) ed M Roberts and I Stewart (Berlin: Springer) pp 193–219
[10] Janeczko S and Roberts M 1993 J. Lond. Math. Soc. 48 178–92
[11] Roberts R M and Zakalyukin V M 1995 Singularity Theory ed D T Lê et al (Singapore: World Scientific)
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